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We investigate the magnetostriction of field-structured magnetoelastomers, which are an important class of
materials that have great potential as both sensors and actuators. Field-structured magnetoelastomers are
synthesized by suspending magnetic particles in a polymeric resin and subjecting these to magnetic structuring
fields during polymerization. These structuring fields can consist of as many as three orthogonal ac compo-
nents, allowing a wide variety of particles structures—chains, sheets, or networks—to be formed. A principal
issue is how particle structure and loading affects the magnetostriction of these materials. To investigate
magnetostriction in these field-structured composites we have constructed a constant stress, optical cantilever
apparatus capable of 1 ppm strain resolution. Magnetoelastomers having a wide range of particle loadings and
structures are investigated, and it is shown that the observed deformation depends strongly on composite
structure. The best magnetoelastomers exhibit a contractive strain of 10 000 ppm, the worst materials exhibit a
negative, tensile response, which we show is due to the dominance of demagnetizing field effects over mag-
netostriction. Finally, some discussion is given to the surprising finding that magnetostriction is proportional to
the sample prestrain. Simulations of a chain of particles in an elastomer show that particle clumping transitions
can occur, but this does not account for the dependence of magnetostriction on prestrain.
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I. INTRODUCTION

There is a need for soft actuators that have a much larger
strain response than piezoelectrics, and that can generate
stress in microseconds. To this end we are developing effi-
cient field-structured magnetostrictive elastomers �FSMEs�
�1–4�. FSMEs are synthesized by first dispersing magnetic
particles in a prepolymer resin. Multidimensional ac mag-
netic fields are then used to organize the particles into com-
plex structures during polymerization. A wide variety of
structures can be produced, including particle chains, sheets,
networks, honeycombs, etc. �5�. These structures have very
different magnetization behaviors, with the best composites
having a specific susceptibility a decade larger than the worst
�6,7�. Because magnetostriction depends quadratically on
composite susceptibility �8�, the method of field structuring
should be an important method of controlling the response of
these materials. The goal of this paper is to understand the
relationship between structure and magnetostriction, and to
use this to develop magnetoelastomers that have an optimal
response.

In this paper we first describe the theory of magnetostric-
tion, the synthesis and processing of FSMEs, and the optical
cantilever apparatus used to measure the material strain. A
discussion of how to correct the observed material strain re-
sponse for the opposing effect of demagnetizing fields is
given, and it is shown that the demagnetizing field stress can
dominate the magnetostrictive stress for some materials. The
observed extraordinary response of certain FSMEs is re-
ported, and is demonstrated to be a result of the strong nega-
tive susceptibility anisotropy of these particular materials.
We then show that the magnetostriction data for a variety of
materials conform to the predictions of theory: FSMEs made
of particle chains exhibit very large magnetostriction when
the field is applied parallel to the chains; FSMEs made of

particle sheets exhibit a very small response when the field is
applied normal to the sheets; and FSMEs structured with
heterodyned triaxial fields exhibit the largest magnetostric-
tion of all.

Finally, some discussion is given of the surprising discov-
ery that the observed magnetostriction actually increases
with sample prestrain. In an attempt to explain this observa-
tion, simulations are given of a chain of magnetic particles
subjected to a uniform field. It is found that the applied field
can cause a hierarchy of particle clumping transitions, which
occur at a set of critical fields. These transitions are shown to
be hysteretic, in the sense that the declumping transitions
occur at lower fields than the corresponding clumping tran-
sitions.

II. THEORY OF MAGNETOSTRICTION

A. Deformations in an initially uniform magnetic field.

When a magnetic particle composite is placed in an ini-
tially uniform magnetic field it may deform for a number of
reasons. First, the individual particles can exhibit magneto-
striction, causing a macroscopic deformation of the sample.
This mechanism is negligible at the �0.1 T fields we apply
to our samples, and even if the applied field did create ap-
preciable stresses in the stiff ferrous particles, these would
not appreciably transmit through the soft polymer matrix.
Second, dipolar interactions between particles can cause
magnetostriction of the sample. This is the effect we wish to
isolate. Third, sample shape can create demagnetizing fields
�9� that can cause significant deformation. This is an effect
we try to minimize in our experiments, but can still be the
dominant effect for some samples �10�. Fourth, if ferrous
pole pieces are used to direct the flux lines to the sample it is
possible for image interactions to occur from the capping

PHYSICAL REVIEW E 74, 051507 �2006�

1539-3755/2006/74�5�/051507�17� ©2006 The American Physical Society051507-1

http://dx.doi.org/10.1103/PhysRevE.74.051507


magnetic monopoles. This is not a factor in our apparatus,
but has probably contributed to reports of “negative magne-
tostriction” in particle composites. Fifth, under special cir-
cumstances the field can exert a body torque on the sample,
even when the field lines are directed along the major axis of
the sample. This torque can lead to large measured strains in
our apparatus, but only for samples synthesized to minimize
magnetostriction. Rather than embark on a full analysis of all
of these effects at this point, we have chosen to describe each
of these as needed to interpret our experimental results.

B. Magnetostriction

Magnetostriction is a result of the tendency of the mag-
netized particles to move in such a way as to increase their
magnetic moments. The typical tendency is for dipole pairs
aligned with the applied field to approach each other, causing
a contraction of the sample along the field, and dipole pairs
perpendicular to the field to push each other away, reinforc-
ing the contraction along the field, due to the fact that the
Poisson ratio is close to 1/2 for these materials.

C. Self-consistent point dipole theory

In a recent theoretical paper it has been shown that com-
posites of magnetizable particles in an elastic continuum
have the potential to exhibit large magnetostrictive stresses
and strains, provided the particles can be suitably arranged
�8�. This paper treats composites that have at most one
unique axis, taken to be the z axis, along which the field is
applied. For example, a composite consisting of chains
formed by a uniaxial structuring field will have its unique
axis parallel to the chains. A composite structured into sheets
by a biaxial field �see below� will have its unique axis nor-
mal to the sheets, and a composite structured by a triaxial
field �below� may not have a unique axis, nor will a random
composite. The goal of this paper is to predict the stresses
that the field will induce in the composite in the directions
parallel and perpendicular to the applied field. The principal
conclusion is that it is possible to use fields to create particle
composites that have significantly enhanced or suppressed
magnetostriction relative to random particle composites.

Because this theoretical paper has motivated the experi-
mental work described herein, it is helpful to give the pre-
dictions. We do so in terms of magnetic variables, though the
original paper is written in the language of electrostatics. The
case of magnetostriction is slightly simpler, because the sus-
ceptibility of the continuous, polymer phase will normally be
very close to zero, and thus the permeability of the polymer
phase will be nearly that of free space, �0.

In the self-consistent local field approximation the mag-
netostrictive stresses parallel �z axis� and perpendicular �x
axis� to the applied field are

�z = −
1

2
�ef f�0H0

2�1 + �zz� ,

�x = +
1

2
�ef f�0H0

2�1 − �zx� . �1�

Here �ef f is the effective relative composite permeability �di-
mensionless� �ef f = �1+2���+�2�� / �1−���−2�2��, which
depends on the relative particle permeability �p through the
contrast factor �= ��p−1� / ��p+2�, and depends on the com-
posite structure through the parameter �2 discussed below,
and the particle volume fraction �. The magnetostriction
coefficients are defined by the strain derivatives �zi
=−�ef f

−1��ef f,z /�si, i=x ,y ,z. A calculation gives

�zi =
��ef f − 1���ef f + 2�

3�ef f
− �i

��ef f − 1�2

�ef f
, �2�

where �z= −2
	�3

+ 2
7

�3�2−�4�

� and �x= 1
	�3

+ 4
7

�3�2−�4�

� . An incom-
pressible composite will have Poisson ratio of 1 /2, so a
field-induced compression along the z axis must be accom-
panied by a volume conserving expansion in the x ,y direc-
tions. The measured stress will thus be �meas=�z−�x.

Magnetostriction of particle composites depends on the
structural parameters �2 and �4, and is notably independent
of the particle size. These parameters are given in terms of
the kth Legendre polynomial Pk�x� by

�k = − �
j�i

� a

rij
	3

Pk�cos 
ij� , �3�

where rij is the distance between a pair of particles in the
composite, and 
ij is the angle of their line of centers to the
direction of the applied field. These sums are taken over a
spherical cavity centered on the ith particle, then averaged
over a statistical number of particles.

D. Predictions for simulated structures

To evaluate these structural parameters we must have a
model of structure. We have developed a Brownian dynamics
simulation that enables us to model structure in one- �1D�,
two- �2D�, and three-dimensional �3D� fields for composites
containing 10 000 particles. A detailed description of these
simulations and the predicted magnetostriction coefficients
can be found in Refs. �5,8�.

From these simulated structures we have obtained the
structural parameters for composites formed in uniaxial and
biaxial fields, as well as for random composites. In the re-
duced stress units, �meas� =�meas / 1

2�ef f�0H0
2, where the stress

is normalized by the energy density of the field, we have
predicted that the reduced stress of a random 10 vol. % com-
posite should be −2.7, the minus sign denoting a compres-
sive stress. For a uniaxial composite the reduced stress is
enhanced several fold, −6.9, whereas for a biaxial composite
with the field directed normal to the sheets the reduced stress
is slightly suppressed, −2.5. At higher particle loadings the
stresses are larger, but the predicted trends are similar. The
maximum stress we computed was for the magnetic ground
state structure, the body center tetragonal lattice. A 10 vol. %
composite containing aligned body-centered tetragonal �bct�
domains would have a reduced stress of −9.4.

Unfortunately, it is not possible for us to make magneto-
striction predictions for samples structured in triaxial mag-
netic fields, because the mean-field approximation of our
magnetostriction theory becomes poor in this case. In es-
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sence, the mean field theory predicts that the sum of the
inverse composite susceptibilities taken along three principal
directions is invariant to structuring �6�. Triaxial composites
violate this sum rule, due to the pure many-body nature of
the interactions in this case. We have discussed this point in
detail elsewhere �7�.

III. SYNTHESIS AND PROCESSING

A. Motivation

The goal of synthesis is to produce materials with optimal
magnetostriction. As the above theoretical discussion indi-
cates, this is roughly equivalent to finding a method of ather-
mally organizing the dense, micron-size particles into struc-
tures that maximize their effective permeability. The
innovation of triaxial magnetic field structuring has made the
optimization of athermal composites possible, and we have
described synthesis in triaxial magnetic fields in detail else-
where �7�. Here we would only like to give a brief descrip-
tion of the synthesis methods we have used, the motivation
for using these, and the resulting susceptibility enhancements
achieved.

B. Materials

The magnetostrictive coefficient is independent of particle
size, provided this is much larger than a single magnetic
domain, typically tens of nanometers. Multidomain particles
can be magnetically “soft,” meaning the remanent magneti-
zation is negligible, or “hard,” meaning the remanence is
significant, such as in permanent magnet materials. We pre-
fer to use soft magnetic particles, as these eliminate remanent
strain.

The susceptibility of the material of which the particles
are made is not terribly important. When a field is applied to
a soft magnetic particle the resultant magnetization is the
product of the particle susceptibility times the field. One
might assume the particle susceptibility is equal to the sus-
ceptibility of the material of which it is composed, but this is
only true when the material susceptibility is quite small—too
small to be of interest here. In fact, the particle susceptibility
is practically independent of the material susceptibility and is
mostly a function of the particle shape. Material susceptibili-
ties are commonly in the range of 102–105 but the suscepti-
bility of a sphere is limited to 3 �MKS� �11�, because its
magnetization creates a demagnetizing field that opposes the
applied field. Thus high susceptibility materials are of no
obvious benefit.

To achieve large magnetostriction the saturation magneti-
zation of the particles should be as large as possible. FSMEs
contain nearly contacting particles aligned with the applied
field. In the particle gaps the fields can become exceedingly
large ��100x the applied field� causing magnetic saturation
of the proximal parts of the particles, which limits their mu-
tual attraction. To avoid this it is desirable to choose particles
with high saturation magnetization, such as Fe, which has a
moment of �2.2 Bohr magnetons per atom, giving a satura-
tion magnetization of 2.1 T. �Fe also has little remanence.�
We use 3–5 micron carbonyl iron particles, obtained from

Lord Corporation, curing these in the silicone polymer,
Gelest Optical Encapsulant 41. To minimize demagnetizing
field effects, the samples are cast as long solid rectangles, of
dimensions 3.25�3.25�50.0 mm, unless otherwise speci-
fied.

C. Using magnetic fields to create structure

More than merely being a practical approach, magnetic
fields are an ideal way of creating structure, since they natu-
rally lead to structures that optimize the composite perme-
ability in a carefully annealed thermal system—one in which
particle diffusion insures that a free energy minimum is at-
tained in the applied field. This is an obvious point: in an
applied field the ground state particle structure is that which
minimizes the net magnetostatic energy, and at low fields this
energy is negative and proportional to the composite effec-
tive susceptibility. The suspension will therefore evolve to
maximize its permeability, and so it would seem that a
simple uniaxial magnetic field would be optimal for structur-
ing particle composites.

Composites with such annealed disorder are not practi-
cally achievable in the laboratory, because this would require
that the dipolar interactions generate particle forces compa-
rable to the thermal fluctuations that give rise to diffusion. If
the applied field is turned down so as to achieve this condi-
tion, the particles will simply sediment. To eliminate the ef-
fect of gravity, significant fields must be used �0.01–0.02 T�.
In such fields the dipolar interactions completely dominate
thermal fluctuations, so the structures that form are an ex-
ample of quenched disorder. We have shown that hetero-
dyned triaxial magnetic fields can be used to create structures
with quenched disorder that mimic those having annealed
disorder, and have demonstrated through permeability mea-
surements that composites structured by heterodyning have
optimized magnetic properties �7�.

D. Field structuring

The FSMEs investigated in this paper were made by ex-
posing a suspension of 3–5 �m Fe or 4–7 �m Ni particles
in a silicone to magnetic fields while the resin gels. The
samples are then post cured at 70 °C for 4 h. The structuring
fields are created by a resonant triaxial Helmholtz coil of our
own design. This computer-controlled magnet and its associ-
ated tunable fractal capacitor bank are described elsewhere
�7�.

A variety of structures can be created by dynamic mag-
netic fields. A uniaxial magnetic field, created by a Helm-
holtz coil or by two parallel plate magnets, causes the par-
ticles to form chains. But a biaxial field, created by applying
two orthogonal ac fields, leads to layered composite consist-
ing of particle sheets in the field plane. Finally, a triaxial
magnetic field can be created by combining three orthogonal
magnetic fields, at least two of which are ac. Composites
formed in triaxial fields can have a variety of structures, and
some of these have highly optimized magnetic properties, so
a brief discussion of this is worthwhile.
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E. Triaxial fields

Particle interactions in triaxial fields are complicated �5�,
but a qualitative discussion will help understand their effects.
The magnetic interactions between vicinal particles are
largely due to their dipole moments, provided their gap is of
order 10% of the particle diameter. At low fields the dipole
moment is proportional to the local field, which is comprised
of two contributions: the applied field and the field due to all
the other dipoles. In a balanced triaxial field �i.e., all rms
field component amplitudes equal� the time-average interac-
tion between the moments induced by the applied field is
zero, so the only nonvanishing interaction is due to the fields
produced by the other dipoles. Thus the interaction is solely
due to many-body effects, so that the interaction between any
two particles is strongly dependent on the positions of the
other particle. Pairwise additivity of these interactions is not
even a useful first approximation.

A triaxial field has three components, each of which has
an amplitude and frequency, for a total of six parameters. In
a balanced triaxial field the root-mean-square �rms� ampli-
tudes are equal, which reduces the field parameters to four.
Within reasonable limits the field amplitude only determines
the time scale of particle motions, and because this is not
germane to the structures produced, we really only have to
worry about the three field frequencies. At reasonably high
field frequencies ��100 Hz�, it is only the beat frequencies
between the fields that are important, and there are only two
such difference frequencies, and thus only two parameters.

The beat frequencies between the field components can
have a significant effect on composite structure when they
are low enough that the prepolymer/particle suspension can
follow the beats. We will use the term triaxial field to refer to
the case where the two beat frequencies are so large �greater
than �25 Hz� that the particle suspension cannot follow the
beats. This leads to isotropic networks of particle chains. The
term 2D heterodyning will refer to the case where the par-
ticle suspension can follow only one beat frequency �e.g.,
component frequencies of 0 Hz, 200 Hz, 201 Hz�, and re-
sults in an anisotropic honeycomb structure. 3D heterodyn-
ing will refer to the case where the suspension can follow
both beat frequencies �e.g., 200 Hz, 201 Hz, 202 Hz�. This
results in an isotropic particle foam structure.

F. Composite susceptibilities

An interesting aspect of magnetic particle composites that
is not always fully appreciated is just how small their sus-
ceptibilities are compared to that of the material of which
their constituent particles are composed. One sometimes sees
a sort of “rule of mixing” assumption, where the susceptibil-
ity of the composite is taken to be the product of the volume
fraction of the particle phase times the susceptibility of the
material of which the particles are made, but in fact this
assumption can be very poor, because the susceptibility of a
single particle is much more a function of the shape and
orientation of the particle than of the material of which it is
composed. For example, the susceptibility of a spherical par-
ticle is just 
p=3�=3��p−1� / ��p+2�. For a material of high
relative permeability �p, such as Fe or Ni, the particle sus-

ceptibility approaches 3. The Maxwell-Garnet prediction for
the susceptibility of a random composite is then just 
ef f
=3� / �1−��. For small volume fractions this gives a specific
susceptibility 
ef f /� close to 3. This specific susceptibility
can be thought of as the effective susceptibility of a typical
particle entrained in the composite.

The effectiveness of field structuring has been quantified
from measurements on Ni particle samples made at a loading
of �=6.8 vol. % �7�. A random composite gave a specific
susceptibility 
ef f /�=7.1, which exceeds the Maxwell-
Garnet prediction of �3 because the particles are not spheri-
cal. A composite structured by a uniaxial magnetic field was
found to have a specific susceptibility of 17.2 along the
structuring field �defined as the z axis� and 5.7 in the x-y
plane normal to this. A composite structured with a biaxial
field in the x-y plane gave 
ef f /�=4.9 along the z axis, and
14.7 in the field plane. Finally, a composite formed in a 3D
heterodyned field with the z-axis field component biased by
+25% gave 
ef f /�=23.1 along the z axis and 10.3 normal to
this. Biased heterodyning thus enables the formation of an-
isotropic composites whose susceptibilties significantly ex-
ceed those created by a simple unaxial field, and should
therefore have much greater magnetostriction.

IV. MAGNETOSTRICTION MEASUREMENTS

A. Optical cantilever apparatus

The reduction of demagnetizing fields is a principal diffi-
culty in designing an apparatus to measure magnetostriction.
These fields are created by the magnetization of the sample
itself and oppose the applied field, seriously reducing the
field in the sample. The magnitude of demagnetizing fields is
strongly dependent on the shape of the magnetic sample. In
order for the applied field to penetrate the sample the field
must be applied along a long axis of the solid, e.g., in the
plane of a sheet or parallel to a long cylinder. An optical
cantilever apparatus readily accommodates long thin
samples, and enables the samples to be prestressed, which is
important to the magnitude of the effect. In the completed
apparatus, Fig. 1, the magnetoelastomer is suspended from a
cantilever, centered in a Helmholtz coil, and prestressed by
adding weights to the cantilever. Strain measurements are
thus made at constant stress. A mirror on the cantilever de-
flects a laser beam, which hits a 640�480 CCD array after a
6 m beam path. A small beam spot is created by imaging,
with a simple lens, a 50 �m aperture positioned a few cm in

FIG. 1. �Color online� �left� Overview of the optical cantilever
apparatus. �right� Side view of the cantilever and the Helmholtz
coil. The coil is elevated above the stainless steel table to reduce the
magnetic image of the Helmholtz coil.
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front of the He-Ne laser onto the CCD. This apparatus has
�50 nm displacement resolution, which for a 50 mm sample
is �1 ppm strain resolution.

The Helmholtz coil was designed for high field homoge-
neity and low power dissipation. Field homogeneity was op-
timized by a careful selection of the coil spacing, and power
dissipation was minimized by making the coil cross section
as thick as practical. The coil pair resistance is 2.2 Ohm and
each coil is 400 turns of 1 mm square wire. Two Kepco
bipolar current supplies �36 V-12 A� connected in parallel
supply currents as large as 18 A to the coil, generating fields
up to �1200 Oe. An electrolytic capacitor is connected in
parallel to the coils to reduce the field ramp rate. A slow
ramp rate prevents cantilever oscillations.

B. Salient aspects of the data

We now examine some typical data, to appreciate the sa-
lient aspects of the response of these materials. Response
will be used to refer to the observed contraction or elonga-
tion of the magnetoelastomer in a magnetic field. Response
is generally a combination of effects, but when the response
is essentially due only to magnetostriction, or when the mag-
netostrictive contribution to the response is extracted from
the raw data, we will refer to this as magnetostriction.

C. Saturation

We start with a magnetoelastomer of Fe particles chained
in a uniaxial magnetic field, with the chains parallel to the
long axis of the sample. At low fields the magnetostriction is
observed to be proportional to the energy density of the field,
as expected, Fig. 2. But at high fields the magnetostriction
reaches a limiting value as the Fe saturates, Fig. 3�a�. This
high field data can be fit by the simple expression

� =
�W

1 + W/Wch
, �4�

where W=BH is twice the field energy density and Wch is the

characteristic value of this, at which the sample strain is 1 /2
the maximum attainable. For composites having large sus-
ceptibilities one would expect � to be relatively large. At
constant susceptibility Wch will increase with the saturation
magnetization of the particles.

If this relation is an accurate description of the data, then
a plot of W /� vs W should give a straight line. Data for a
10 vol. % uniaxial sample show that this is indeed the case,
Fig. 3�b�, giving �=1.18 ppm/Pa and Wch=8.35 kPa. In a
saturating field the strain will approach �max=�Wch, which in
this case is 9,800 ppm. This strain is five times greater than
that obtained for terfenol-D.

FIG. 2. Experiments at low fields show the strain is proportional
to the energy density of the field. These data are for a 20 vol. %
sample structured by a uniaxial magnetic field.

FIG. 3. �a� Response data for a 10 vol. % Fe composite shows
the effect of magnetic saturation. The characteristic field product
where the response is half of its maximum is indicated. �b� A linear
plot on these axes indicates that Eq. �4� is an accurate description of
the data and allows the fit parameters to be obtained from the
slope and intercept. These parameters enable a saturation strain of
9800 ppm to be deduced.
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D. Prestress dependence

For a chain of hard spheres to contract there must be gaps
between the particles, so it is not surprising that there should
be some dependence of magnetostriction on sample prestress
or prestrain. The low field data in Fig. 4 were taken at three
widely different prestresses, and show a nonmonotonic de-
pendence of the observed strain on prestress. In this case the
elastic modulus of the sample is 1.7 MPa, so the sample
prestrain varied from 7400 ppm to 61 000 ppm. This pre-
strain is thus much greater than that needed to create gaps
large enough to accommodate the observed responses, which
are less than 200 ppm. This dependence of the observed
strain on sample prestress is a complicated aspect of these
materials that we will discuss below.

E. Particles

The linear theory of magnetostriction shows that the stress
depends on the particle susceptibility. The susceptibility of
field-structured composites of Ni and Fe powders are very
similar �6,7�, yet our experiments show that Fe composites
have six times greater magnetostriction than Ni composites
�data for 20 vol. % composites�. We believe that this unex-
pected difference is due to poor adhesion of the polymer to
the Ni particles, which causes field-induced clumping transi-
tions in the strained Ni composites.

F. Sample shape

The observed response can also depend on the sample
shape. In Fig. 5 measurements on a sample with an aspect
ratio of 14.3 are compared to those on a sample of aspect
ratio 5.9. The high aspect ratio sample has significantly
greater response, due to the reduced opposing effect of de-
magnetization fields. Accounting for demagnetization field

effects is thus an important aspect of extracting magneto-
striction from the response data.

G. Composite structure

The structure of the particle agglomerates within the com-
posite have an enormous influence on the response, Fig. 6.
An unstructured sample has much smaller magnetostriction
than a sample structured by a uniaxial field, and a sample
structured by a biaxial field normal to the long axis of the
sample even exhibits a negative response. Some samples ex-

FIG. 4. Measurements of the response of a uniaxial Fe compos-
ite show a dependence on prestress. The response increases linearly
with prestress for stresses below a yield stress. Note in particular
the especially low response at the highest applied stress.

FIG. 5. Measurements on samples of aspect ratios 14.3 and 5.9
show how the sample shape can influence the response. The higher
aspect ratio sample has a greater response at all fields, as expected
from consideration of the opposing effect of demagnetization fields.

FIG. 6. The structure of the particle agglomerates has an enor-
mous impact on the response. The composite made in a uniaxial
field has a considerably greater response than the unstructured, ran-
dom composite. The composite made in a biaxial field actually ex-
hibits a negative response.
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hibit even more complex behavior, with an observed positive
response at low fields and a negative response at high fields.
But whether or not this mixed behavior occurs is also depen-
dent on the prestress.

H. Extraordinary response

A few samples were found to exhibit an extraordinary
response, Fig. 7. This extraordinary response occurs at lower
particle loadings, low applied stresses, and high fields. It also
only occurs for samples structured by a biaxial field.

It is clear that there are quite a few effects for which an
explanation is needed. We will start by considering demag-
netization field stresses, as an understanding of these is es-
sential to the interpretation of all the response data.

V. DEMAGNETIZING FIELD STRESSES

We now consider the demagnetizing field stress on a pro-
late spheroid subjected to an initially uniform magnetic field.
Our samples are solid rectangles, so this stress computation
will not exactly correspond to experiment, but is nonetheless
a good approximation.

The tensile stress on a prolate spheroid due to its demag-
netizing field arises because an elongation of the sample will
decrease its demagnetizing field, thus increasing its internal
field and magnetic moment. The field inside a prolate spher-
oid is uniform when placed in an initially uniform field,
which makes possible an analytical solution to internal field.
This internal field can also be expressed in terms of a demag-
netization factor that is independent of the material suscep-
tibility �9�. The field inside a solid rectangular object is not
uniform, and does not admit to an analytical solution. A de-
magnetization factor can be defined for the average internal
field, but then this depends in a complex way on the material
susceptibility �6�.

We start by developing an expression for the internal
field. For a prolate spheroid of aspect ratio g�1 with its long
axis aligned with the field �which we take to be along the z
axis� the demagnetization factor n is �9�

n =
1

g2 − 1

 g

2�g2 − 1
ln�g + �g2 − 1

g − �g2 − 1
	 − 1�

� �ln�2g� − 1�/g2 for g � 1. �5�

The macroscopic internal field is then given by the standard
expression Hint=H0−nM=H0−n
Hint, where 
 is the com-
posite susceptibility. If the applied field is low enough that
the composite is far from saturation, then we can assume the
composite susceptibility 
 is independent of field, and

Hint = H0/�1 + n
� . �6�

To compute the stress we consider the energy change dur-
ing strain. The energy of a linear magnetic material of mo-
ment m in an applied field H0 is U=− 1

2�0m ·H0. This ex-
pression includes the work done by a perfect power supply
used to keep the applied magnetic field constant. The applied
field will thus cause a force F=− �U

�Z ẑ, where Z is the spheroid
major diameter. A positive force indicates an elongational
stress. In terms of the sample moment m=VM, the force is
F= + 1

2�0H0V �M
�Z ẑ, where V= 	

6 �2Z is the sample volume, � is
the spheroid minor diameter, and the magnetization is M
=
cHint. Using Eq. �6� for the internal field gives the force

F =
1

2

�0H0
2V

�1 + n
�2
 �
c

�Z
− 
2 �n

�Z
� . �7�

Large aspect ratio samples. For incompressible samples
having a large aspect ratio g it is simple to obtain an analyti-
cal result for the demagnetizing stress. In this limit the de-
magnetization factor is approximately na= �ln�2g�−1� /g2,

and
�na

�Z = −3
�g3 �ln 2g−3/2�. Substituting this expression into

Eq. �7� gives the measured stress

�meas =
�mag

�1 + n
�2 +
�0
2H0

2

�1 + n
�2

ln 2g − 3/2

g2 , �8�

where the magnetostrictive stress is �mag= 1
3�0H0

2 �

�� and � is

the strain. This expression can be used to correct experimen-
tal data taken at low applied fields for the demagnetizing
field strain, with the result

�mag = 
�meas −
�0M2

E
�n − 1/2g2��� H0

H0 − nM
	2

, �9�

where M=
Hint and E is the tensile modulus.

A. Saturation

At magnetic fields large enough that the linear suscepti-
bility approximation fails, the calculation of the stress be-
comes more complex. If we define the nonlinear susceptibil-
ity 
�Hint�=M /Hint, the internal field can be written as Hint

=H0 / �1+n
�Hint��. For particle composites the susceptibility
is small, typically less than 5, and for long prolate ellipsoids
the demagnetization factor is small as well, so the product n


FIG. 7. Biaxial composites made at small particle loadings ex-
hibit an anomalously large response at very small applied stresses
and high fields.
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is small. Thus with little error we can use the approximation
Hint=H0 / �1+n
�H0��. For a change in the sample magneti-
zation at constant applied field the force is still F
= + 1

2�0H0V �M
�Z ẑ. Using these expressions we can show that

Eq. �9� is approximately correct even for saturating fields.

B. Small aspect ratio samples

For samples with a small aspect ratio, say g�4, Eq. �9� is
a really poor approximation, as Fig. 8�a� shows. On the other
hand, differentiating the exact form, Eq. �5�, of the demag-
netizing factor n with respect to g would lead to a formidable
expression. A good approximation to the exact derivative
dn /dg, taken numerically, is all that is needed. Balancing
accuracy against simplicity we came up with

dn

dg
� −

2n

g
+

1

g3
1 −
7

8
ln�1 + g2�/g2� . �10�

This expression becomes exact for large g and is never off by
more than �1.4%, as shown in Fig. 8�b�. The formula for the
effect of demagnetizing fields on the measured strain is

�mag = 
�meas −
�0M2

E

n −

1

2g2
1 −
7

8
ln�1 + g2�/g2���

� � H0

H0 − nM
	2

. �11�

This expression is much more accurate than Eq. �9� for low
aspect ratio samples.

A key prediction of Eq. �11� is that the demagnetizing
field strain �or stress� is independent of the sample prestress.
Experimental data in support of this are shown in Fig. 9 for
a 10 vol. % biaxial composite with an aspect ratio of 4.7.
Here the observed response is entirely negative �elongation�,
being dominated by demagnetization fields. Because magne-
tostriction does depend on the sample prestress, the combi-
nation of the two effects can lead to complicated trends, as
shown below.

C. An example

A biaxial, 30 vol. % Fe particle composite is an ideal ex-
ample of the importance of demagnetization field correc-
tions, since it should exhibit small magnetostriction and thus
the demagnetization fields should produce a significant con-
tribution to the response. The data for this sample, Fig. 10�a�,
show a complex behavior with both negative and positive
responses obtained at some sample preloads. The modulus

FIG. 8. �a� A comparison between the approximate �labeled
“large g”� and exact forms of the demagnetization factor in Eq. �5�
show that the approximate form becomes very inaccurate at low
aspect ratios. �b� The derivatives of the approximate and exact ex-
pressions in Eq. �5� differ substantially for aspect ratios less than 5.
The closed-form expression in Eq. �10� �labeled “approximation”�
is sufficiently close to the exact derivative that the discrepancy can-
not be seen on this plot.

FIG. 9. Experiments performed on a low-aspect-ratio biaxial
composite show a large negative response at all applied stresses,
due to the minimal magnetostriction of this structure and the inten-
tionally exagerrated effect of demagnetizing fields. From these data
we conclude that the demagnetizing field strain is essentially inde-
pendent of the applied stress.

MARTIN et al. PHYSICAL REVIEW E 74, 051507 �2006�

051507-8



for this composite is 7.5 MPa, so the range of sample pre-
strains is from 3400–13 300 ppm.

To correct this response data for demagnetizing field ef-
fects requires an expression for the sample magnetization. In
an earlier paper �11� we studied the magnetization behavior
of field-structured particle composites and found that the ex-
pression

M =

H

�1 + �
H/�Msat�2
�12�

is accurate. Here � is the volume fraction of particles, 
 is
the composite susceptibility, and Msat is the saturation mag-
netization of the particle material. Msat for Fe is 1.72
�106 A/m and the measured composite susceptibility along
the applied field 
 is 3.03 for this 30 vol. % biaxial compos-
ite.

We first examine the largely negative response at the low-
est prestress, Fig. 10�a�, since this is mostly due to demag-

netization fields. This curve is fit to the sum of two functions:
Eq. �4�, whose two parameters we seek, and Eq. �11�, whose
parameters are known. Some adjustment to the sample aspect
ratio is required, as the samples are solid rectangles, not pro-
late spheroids. The result of this analysis, Fig. 11, shows that
demagnetization fields dominate the response of this sample.
The extracted magnetostriction curve is positive and mono-
tonically increasing, with a maximum strain of only 27 ppm
at this prestress. Fits to the remaining response curves in Fig.
10�a� were made with exactly the same demagnetization
strains, with the extracted magnetostriction curves shown in
Fig. 10�b�. The magnetostriction of this sample is really quite
poor, as expected from theory �8�.

Finally, it is of interest to examine the dependence of the
demagnetization strain on particle loading for the aspect ra-
tios of our standard samples. These computed curves are
shown in Fig. 12 for both random and uniaxial composites,
using the measured tensile moduli and composite suscepti-
bilities. For the uniaxial samples the demagnetization field
correction becomes significant only at 30 vol. %.

VI. EXTRAORDINARY RESPONSE

Some of the samples we synthesized to test our under-
standing of magnetostriction in field-structured composites
exhibited an extraordinary positive response at low preloads
and high fields. This surprised us because this effect only
occurred for samples we expected to have minimal magne-
tostriction. This extraordinary response only occurs when the
transverse susceptibility �i.e., normal to the long axis� of the
magnetoelastomer significantly exceeds the longitudinal sus-
ceptibility.

FIG. 10. �a� For a 30 vol. % biaxial field-structured composite
the response data depend non-monotonically on the field, with both
negative and positive responses at some applied stresses. �b� The
magnetostriction effect extracted from the response data by remov-
ing the influence of demagnetizing fields is positive and monotonic.

FIG. 11. The various contributions to the response curve in Fig.
10�a� that was taken at an applied stress of 25.4 kPa are shown. The
demagnetizing field strain dominates magnetostriction, which
reaches a maximum of only 27 ppm. The correction �H-nM�/H for
the field penetration is negligible. This demagnetizing field strain
was subtracted from all of the response data in Fig. 10�a� to gener-
ate the magnetostriction data in Fig. 10�b�.
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A. Susceptibility anisotropy

For most samples the field exerts a stabilizing torque,
since a magnetic material will tend to align along its long
axis. The cause of the extraordinary response is a destabiliz-
ing torque that is due to an inverse susceptibility anisotropy
in some samples.

The parallel and perpendicular sample susceptibilities 
�,

� are functions of composition and shape. Taking both of
these factors into account gives


� =

c,�

1 + n�
c,�
, 
� =


c,�

1 + n�
c,�
, �13�

in terms of the susceptibilities intrinsic to the composite it-
self, 
c,� and 
c,�. In the absence of an applied stress the
sample will align along the axis of greatest susceptibility.
The magnetic field is applied along the longitudinal axis, but
if the perpendicular susceptibility is larger, i.e., 
��
�, the
field will exert a destabilizing torque on the sample.

The question arises as to whether it is possible for this
destabilizing torque to arise in a long thin FSC. For a long,
thin cylinder the demagnetization factors are very close to
n� =0, n�=1/2. For a 10 vol. % biaxially structured compos-
ite of particle sheets we have found �11� that the susceptibil-
ity normal to the sheets is 0.335 �MKS�, whereas in the plane
of the sheets it is 1.593. If the sheets are formed normal to
the cylindrical axis, the sample susceptibility is 
�

=1.593/ �1+0.5�1.593�=0.8875 which is much greater than
the longitudinal susceptibility of 0.335. Such a sample will
exhibit a destabilizing torque in an applied field if the ap-
plied stress is small enough.

At higher particle concentrations a destabilizing torque
should not occur. For example, for a 20 vol. % composite the
susceptibility normal to the sheets is 1.380 �MKS� and in the
plane of the sheets it is 2.750. If the sheets are again formed
normal to the cylindrical axis, the sample susceptibility is

�=2.750/ �1+0.5�2.750�=1.158 which is now lower than
the longitudinal susceptibility of 1.380, so the torque will be
stabilizing, even at zero applied stress.

B. Torque balance

The magnetic torque on the sample can be computed by
considering the magnetostatic energy of a sample inclined at
an angle 
 to the applied field. The magnetostatic energy is
U=− 1

2�0m ·H0 where m is the sample moment. Let our Car-
tesian coordinates �x ,y� be such that the applied field is in
the y direction. The coordinates �x� ,y��, are defined such that
the sample is along the y� direction. The sample moment is
then m=vH0�
� cos 
ŷ�−
� sin 
x̂��, where v is the sample
volume. The energy is thus U=− 1

2vH0
2�
� cos2 
+
� sin2 
�

and the magnetic torque is

�m = �0vH0
2 cos 
 sin 
�
� − 
�� . �14�

As expected, a positive, destabilizing torque occurs when the
transverse susceptibility exceeds the longitudinal. The stress
applied to the sample exerts the negative torque �s
=−Fl sin 
, where l is the sample length. Balancing the me-
chanical and magnetic torques gives the equilibrium angle

cos 
 =
�

�0H0
2�
� − 
��

�15�

in terms of the sample stress �. When this expression gives a
positive value of cos 
 that is less than unity, an instability
will occur. This condition occurs with large fields and small
applied stresses. The sample strain is just 1−cos 
.

For the 10 vol. % sample of sheets, 
�−
� =0.553. At an
applied stress of 3.45 kPa �0.5 psi� the critical field will be
70.5 kA/m �883 Oe�. Larger fields will show a clear insta-
bility, as the data in Fig. 7 demonstrate.

VII. RESULTS

In this section we discuss the magnetostriction results we
have obtained for a variety of composite structures, with vol-
ume fractions ranging from 10–45%. In these controlled
stress experiments the strain is directly measured, but in ad-

FIG. 12. Modeling the demagnetization field strain for �a� ran-
dom and �b� uniaxial composites shows that the strain becomes
increasingly significant as the particle loading increases. There is
also a dependence on structure, since this affects the sample
magnetization.
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dition there are a number of computed quantities that are of
interest. These include the maximum strain at saturation, the
characteristic field product BH �twice the field energy den-
sity�, the magnetic field contribution to the stress and modu-
lus, the work performed, and the energy efficiency.

Before giving these factors it is interesting to note that the
self-consistent point dipole model actually overestimates
magnetostriction. Consider the 10 vol. % composite struc-
tured by a uniaxial field, for which the predicted stress is
6.9�

1
2�ef f�0H0

2. Experiments show that the effective rela-
tive permeability for this composite is �ef f =2.36 and the
tensile modulus is 1.7 MPa �245 psi�. Using these param-
eters we predict a strain of ��ppm�= �4.8 m3/J�B�H, where
B is the magnetic induction field created by the magnet in the
absence of the sample. Experimental data at low fields and
optimal sample preload give ��ppm�= �1.2 m3/J�B�H, so
the real material falls well short of expectations. We believe
the discrepancy is related to the fact that the observed mag-
netostriction is dependent on prestress, and the reasons for
this are complex, as discussed briefly below.

A. Saturation strain and characteristic field product

The maximum strain at magnetic saturation and the char-
acteristic field product are obtained from fitting to Eq. �4�, as
described above. For the 10 vol. % chain sample the result is
in Fig. 13�a�. Here it is seen that the greatest saturation strain
occurs at an applied stress of �80 kPa, corresponding to an
applied tensile strain of 4.7%. At this prestress the character-
istic field product B�H is 6.4 kPa, so the composite reaches
half its saturation strain at a field of �72 kA/m �900 Oe�. A
field of this magnitude is easily achieved with an open-air
Helmholtz coil, making these materials a practical choice for
actuator applications.

B. Magnetic modulus and stress

Because measurements at low applied stresses show a lin-
ear dependence of the sample strain on the applied stress,
invoking a field-dependent magnetic tensile modulus Em is a
useful way to describe the data. For a sample under constant
stress, the effect of the magnetic field is to change the strain
alone. This strain change is ��=��1/E0−1/ �E0+Em��, so
the magnetic modulus is

Em =
��E0

2

� − ��E0
, �16�

where E0 is the tensile modulus in the absence of an applied
field. The magnetic modulus for the 10 vol. % Fe chain com-
posite at saturation is given in Fig. 13�b�, using the measured
tensile modulus of 1.7 MPa �245 psi�. Em increases with
magnetic field and can be as large as 0.4 MPa at modest
fields. Figure 13�b� shows a pronounced yield behavior, and
the yield stress is found to increase with magnetic field, so it
would be careless to use the magnetic modulus to compute
stresses and strain without taking this yield behavior into
account.

When the magnetic field is turned on, the sample con-
tracts, so part of the stress initially supported by the elas-

tomer is taken up by the magnetic interactions between the
particles. This magnetic stress load is

�m = �Em/�E0 + Em� = ��E0, �17�

a formula which is intuitive, since a force added to a har-
monic well merely generates a displaced harmonic well with
the same stiffness. The data in Fig. 13�b� show that a maxi-
mum magnetic stress of 15 kPa can be obtained at a particle
loading of 10 vol. %.

It is interesting to look at the work done per unit volume
of sample during this strain. This “work density” is the prod-
uct of the strain and the applied stress. For the 10 vol. % Fe
sample the work density is u=9800 ppm�80.4 kPa
=0.8 kPa at magnetic saturation.

FIG. 13. �a� The saturation strain of a 10 vol. % Fe composite
approaches a maximum of 10 000 ppm. The characteristic field
products, Eq. �4�, where this composite reaches half maximum re-
sponse, increase with the load, but remain well within the range of
open air Helmholtz coils. �b� The magnetic modulus of this com-
posite reaches a maximum of 500 kPa at a load of 60 kPa, but the
magnetic stress maximizes at only 15 kPa, due to the small satura-
tion strain.
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C. Effect of particle loading

It would be expected that the magnetic response of these
composites increases in proportion to the particle loading,
but in reality the performance increases are mixed. As the
particle loading increases, the sample response actually de-
creases, Fig. 14�a�, but the magnetic stress increases, Fig.
14�b�, because of the increase in the composite tensile modu-
lus. Increasing the particle concentration thus yields an ac-
tuator that can handle larger loads, but with smaller displace-
ments. In fact, the work density also increases with particle
loading, Fig. 15�a�, reaching a value of over 1 kPa at an
applied strain of �2% for a particle loading of 45 vol. %.
The magnetic modulus, Fig. 15�b�, increases sharply with
concentration, peaking at over 2 MPa �290 psi� at 45 vol. %,
compared to the zero field tensile modulus of 10.8 MPa.

D. Role of composite structure

Composite structure is of cardinal importance in the re-
sponse of magnetoelastomers to magnetic fields. To illustrate
this we compare the magnetostriction of unstructured
��random� composites to field-structured composites.

In Fig. 16 the raw response �a� and extracted magneto-
striction �b� curves are shown for an unstructured 10 vol. %
Fe composite. �The magnetostriction was extracted from the
response curves in the manner described above.� The mag-
netostriction of this unstructured composite is �5 times
smaller than that of the 10 vol. % uniaxial composite, Fig. 5.
We are unable to provide data for a biaxial sample at this
particle loading because of the torque instability exhibited by
this sample. However, we would expect that the biaxial com-
posite would have very low magnetostriction.

At 30 vol. % the torque instability does not exist, so it is
possible to collect response data for a biaxial sample. These

FIG. 14. �a� The saturation strain as a function of the applied
strain for uniaxial composites. The saturation strain decreases sig-
nificantly with increasing particle loading and maximizes at lower
applied strains. �b� The magnetic stress increases with particle load-
ing and exhibits well-defined maxima. This maximum is at consid-
erably lower applied strains for the 45 vol. % composite.

FIG. 15. The work density �a� and magnetic modulus �b� as a
function of applied strain for uniaxial composites of a range of
particle loadings. These data show that performance increases with
particle loading, even though the magnetostrictive strain decreases
with particle loading. The magnetic modulus of the 45 vol. %
sample is especially high, but reaches a maximum at a low strain, so
the work density is high at might be expected.
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measurements show that at the same applied stress the mag-
netostriction of a biaxial sample is roughly 6.6 times smaller
than a uniaxial sample. The tensile modulus of the biaxial
composite, 7.5 MPa, is larger than that of the uniaxial com-
posite, 4.2 MPa, so the measured magnetic stress ratio �see
Eq. �17�� of the uniaxial to the biaxial composite is 6.6
�4.2/7.5=3.7. The theoretical magnetic stress ratio, based
on simulated 30 vol. % structures, is 4.4, which is in reason-
able agreement with experiment. In the linear response re-
gime the biaxial composite strain response is ��ppm�
= �0.13 m3/J�B�H whereas the uniaxial obeys ��ppm�
= �0.66 m3/J�B�H, both at an applied stress of 100 kPa.
Accounting for the modulus difference gives a magnetic
stress ratio of 3, somewhat smaller than at larger fields.

E. Triaxial composites

As mentioned above, we have been successful in using
triaxial magnetic fields to enhance the susceptibility of par-
ticle composites to levels exceeding those obtained in

uniaxial fields �7�. According to the trends of the self-
consistent point dipole theory given above, triaxial compos-
ites should thus have greater magnetostriction than uniaxial
composites. To test this hypothesis we synthesized compos-
ites under two triaxial field conditions: balanced 2D hetero-
dyning, and 3D heterodyning with a +25% field bias along
the long axis of the sample. Because the uniform field region
of our triaxial magnet is small, we had to reduce the size of
our samples to 3.3�3.3�24 mm, which lowered their as-
pect ratio. To facilitate direct comparison, we also synthe-
sized a uniaxial composite of the same dimensions.

The measured specific susceptibilities of these three com-
posites are 15.8 for the 2D heterodyned, 17.2 for the
uniaxial, and 23.1 for the 3D heterodyned with +25% field
bias. We expect that the magnetostriction data will reflect
this trend, and it does, Fig. 17. The balanced triaxial field
with 2D heterodyning has reduced magnetostriction relative
to the uniaxial sample, and the biased 3D heterodyned com-
posite has increased magnetostriction. We cannot make a de-
tailed comparison to theory, as our mean-field approach is
problematic for composites made in triaxial fields �7�.

VIII. DISCUSSION

A remaining issue is why the observed strain depends on
the sample preload, when the preloads are clearly sufficient
to accommodate a much greater contraction without the par-
ticles contacting. This is a complex effect that we believe has
to do with field-induced particle clumping transitions. The
possibility of clumping was mentioned in our paper on stric-
tion, but here we would like to start to develop that idea
quantitatively, focusing only on a single chain.

FIG. 16. Response �a� and extracted magnetostriction �b� for an
unstructured 10 vol. % Fe composite. The magnetostriction of this
unstructured composite is roughly 1/6 that of a uniaxial composite
at the same particle loading.

FIG. 17. The magnetostriction at low fields is compared for
composites structured by three types of magnetic fields: a uniaxial,
2D heterodyned, and 3D heterodyned with a bias �field enhance-
ment� along the long axis of the composite. Biased heterodyning
leads to composites with greater magnetostriction than those syn-
thesized in a simple uniaxial field. This result is expected, since this
type of structuring field maximizes the composite susceptibility.
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There are two forces on an enchained particle subjected to
a longitudinal magnetic field: a destabilizing attractive dipo-
lar interaction with the other particles in the chain, which
tends to bring vicinal particles into contact, and a stabilizing
elastic interaction with the gel, which tends to localize a
particle at the mid-point between the two vicinal particles.
Each of these potentials has a curvature, and when the sum
of these curvatures is zero the force on a particle is zero and
the chain become unstable to fluctuations, a so-called “soft
mode.”

A. Constrained chain

In the interest of simplicity we will first consider a sim-
pler instability: that of a single “focus” particle in an elon-
gated chain with all of the other particles held fixed. As an
initial condition all of the particles are initially equally
spaced. We seek the force on the focus particle displaced a
distance � from the midpoint between its nearest neighbors.
If the displacement is positive and the force is negative, then
the midpoint is a stable position, and vice versa. This chain is
taken to be aligned along the z axis, and is subjected to an
applied field H0=H0ẑ.

B. Magnetic force

The magnetic force on the focus particle is proportional to
the gradient of the local field. The local field is the sum of
the applied field plus the fields from all of the other dipoles.
The “dimagnetophoretic” force on a particle is given by the
well-known expression Fm=�0m ·�Hloc, which reduces to
Fm=�0m��Hloc /�z�ẑ, with Hloc the local field.

To compute the local field we must first determine the
field produced by each dipole. Each dipole of induced mo-
ment m=mẑ will produce a field that along the chain axis is
Hm= 1

2	r3 mẑ. A self-consistent point dipole calculation shows
that the magnitude of the moment of each interior dipole is
m=v
pH0 / �1−
p��3� /6�3� where v= 	

6 d3 is the particle vol-
ume, ��x� is the Reimann zeta function, and the chain elon-
gation is �=1+� where � is the chain strain �at �=1 the
particles just contact.� The particle susceptibility 
p=3�
where � is the permeability contrast factor defined above.
From symmetry the local field at a dipole site is an even
function and can thus be expressed as a series of the square
of the particle displacement. To first order in �2 the local
field at the focus particle is

Hloc��� =
H0

1 −

p��3�

6�3


1 +

p��5�
�5d2 �2� . �18�

By differentiating the local field the magnetic force on the
particle is found to be

Fm = + ��5�
	d

3�5

�0
p
2H0

2


1 −

p��3�

6�3 �2�ẑ . �19�

Note that this magnetic force is always destabilizing.

C. Elastic force

The elastic force on a single particle embedded in a
gel and displaced a distance � in the z direction is Fg
=−3	dG�ẑ, where G is the gel modulus. For a particle in a
chain, G will have to be renormalized due to debonding of
the gel from the particle in the particle gap region, so G may
be regarded as an effective parameter. In this view of the gel
each particle is localized as if by a cantilever spring. Elastic
interactions between particles are not included, so we simply
call this the cantilever model. An illustration of the cantilever
model is given in Fig. 18.

D. Particle potential

Before giving a detailed analysis of the stability of an
athermal enchained particle, it is helpful to outline the three
possible regimes: stable, bistable, and unstable. Consider a
chain that is strained to create equal gaps between the par-
ticles. If the field applied parallel to the chain is small, the
potential will form a well with upward curvature, and the
focus particle will be stable. At a critical magnetic field, the
curvature of the potential at the edge of the well vanishes,
Fig. 19, so that the focus particle would remain in contact
with a neighboring particle, if displaced to that position. This
critical field marks the declumping transition. At fields some-
what larger than this declumping field the potential is
bistable, which can cause hysteresis in the particle position.

FIG. 18. �Color online� Illustration of the cantilever model
showing both the cantilever springs and coil springs. In the cantile-
ver model the coil springs are much stiffer than the cantilever
springs, and are included only to facilitate an understanding of the
stress calculation.
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Finally, a second critical field is reached where the potential
has zero curvature at the middle. This field marks the clump-
ing transition, where the particle becomes unstable at its
midpoint and will move into contact with one of its neigh-
bors. Thus if an increasing field is applied parallel to the
chain, the focus particle will clump at a field that is much
larger than the field at which it will declump as the field is
reduced.

E. Clumping transition

The focus particle becomes unstable when the magnetic
force dominates the gel force. The clumping field that marks
this transition is thus

�0�2Hclump
2 =

G

n

�5

��5�
�1 − ���3�/2�3�2. �20�

Note that this transition is strongly dependent on the chain
prestrain, which tends to stabilize the particle by reducing
the magnetic interactions.

We have introduced a factor n in Eq. �20�. This factor is 1
for the single particle fluctuation with the rest of the particles
constrained—the case at hand. But for the physically more
realistic case of a chain of unconstrained particles, the
clumping transition is given by Eq. �20� with n=2. In this
case the clumping transition exhibits itself as a clustering of
particles into dimers.

Particle dimer formation is just the first of a non-ending
succession of clumping transitions, each with its own stabil-
ity condition. At successively higher fields, the dimers will
form tetramers, the tetramers will form octamers and so
forth.

F. Declumping transition

As the field is ramped back down, there is a succession of
declumping transitions. But each of these transitions occurs
at a lower field than the corresponding clumping transition.
A tedious calculation shows that the declumping transition
for dimers is

�0�2Hdeclump
2 =

32

31

G

n

�5

��5�
1 − ���3�/2�3

�
1 +
6

��3�
�� − 1

�
	2��2

. �21�

Declumping occurs at a smaller field than clumping, and the
chain is hysteretic, in the true sense that energy is dissipated.

G. Simulations

The implications of this cantilever model for magneto-
striction are interesting. To explore this, a dynamics simula-
tion was written that included, in addition to the magnetic
and gel forces, both hard sphere interactions and viscous
dissipation in the gel, the latter of which serves to damp the
phonons that would otherwise arise from the clumping insta-
bilities. This simulation is done in the self-consistent point
dipole approximation, and the chain is strained by displacing
the chain ends alone—the other particles are unconstrained.
The gel is assumed to deform affinely with the strain, so that
the positions of the harmonic wells defined by the cantilever
springs move in proportion to the strain. The force acting on
each particle is the sum of the gel force, the dipolar interac-
tions with all of the other particles, the hard sphere interac-
tions with the nearest neighbors, and the viscous drag from
the gel viscoelasticity.

H. Stress calculation

Before giving simulation results we must discuss the
problem of stress calculation for the cantilever model. In
general, the stress in a chain of particles is computed across
any particular plane by simply summing the force of inter-
action between each particle on one side of the plane with all
of the other particles on the other side. The force of interac-
tion between the two semichains is then normalized by the
area associated with the single chain to generate a stress.
This computational prescription seems simple enough, but in
the cantilever model the force on a particle due to the gel is
not a pairwise interaction with another particle. How then
does this gel force contribute to the stress?

To compute the gel stress we must account for the fact
that the gel itself provides the support for the cantilevers. To
model this we imagine that the cantilevers are connected to
the nodes of a chain of coil springs, as depicted in Fig. 18.
Each of the n Hookean springs has a force constant K and
thus in the unperturbed state the tension in each spring is Kl0,
where l0 is the unperturbed spring length. Now suppose the
particle attached to the cantilever that is attached to node
m+1 is displaced by a force F applied along the chain direc-
tion. The effect of this cantilever force is to alter the tension
in the coil springs above and below this node. The tension

FIG. 19. The potential of an enchained particle is deformed by
the application of a magnetic field. Three regimes are possible, and
occur with increasing magnetic field: stable, bistable, and unstable.
Chain elongation has an opposite, stabilizing effect.
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change in each coil spring contributes to the magnetic stress
in a plane that bisects that spring.

The computation of the change in the spring tension is
straightforward. Let x and y denote the coil spring length
below and above node m+1, respectively. The total chain
length, which is fixed, is then L=nl0=mx+ �n−m�y. A force
balance gives F=K�x−y�. Combining these two equations
and solving then gives y= l0− m

n
F
K . The tension of the springs

above node m+1 change by − m
n F and below node m+1 they

change by + n−m
n F. Two points are noteworthy. First, the ten-

sion change in each spring is independent of the initial �zero
field� spring tension. Second, this tension change depends on
the position of the particle to which the force is applied,
which is an unusual aspect of the cantilever model. The gel
contribution to the stress across a plane that intersects spring
m, which connects nodes m and m+1, is

�gel = �
j=1

m

−
j − 1

n − 1
Fj + �

j=m+1

n
n − j

n − 1
Fj . �22�

The remaining stress contributions are from the dipolar and
hard sphere interactions between particles separated by the
stress plane. The sum of these terms gives a sample magnetic
stress that numerical computations show is independent of
the location of the stress plane, which is an important check
on Eq. �22�.

I. Simulation results

Typical results of this simulation are shown in stress ver-
sus elongation data in Fig. 20. In this simulation a chain
subjected to a constant field is continuously elongated from a
state of zero strain to some maximum strain, and then the
strain is reversed.

Upon extension a series of declumping transitions are ob-
served, until at full elongation the chain consists of equally
spaced particles. These transitions cause the abrupt changes
in the stress. Clumping transitions occur at lower elongations
upon contraction, as expected, causing true hysteresis in the
stress curves �the contraction stress is lower, as it must be�.
Two points are important. First, because of the energy dissi-
pation it is not possible to obtain the stress from a strain
derivative of the dielectric constant. Second, the stress still
decays monotonically with the strain, unlike the experimen-
tal data, so this single chain model does not explain the pre-
load dependence of our measured magnetostriction. Current
work is focused on understanding collections of interacting
chains. These calculations show some promise of explaining
the unexpected dependence of magnetostriction on preload.

IX. CONCLUSIONS

We have shown that the magnetostriction of field-
structured magnetoelastomers is highly dependent upon the
structure of the particle agglomerates. In increasing order of
response are biaxial composites, random composites,
uniaxial composites, and triaxial composites formed by het-
erodyning with a field bias. Magnetostrictions of up to
10 000 ppm have been demonstrated, as have modulus en-
hancements of 2000 kPa. We have shown that even for high
aspect ratio samples demagnetizing field corrections can be
important, and have identified a torque instability in some
samples formed in biaxial fields. Finally, we have shown that
there is a possibility of particle clumping transitions in these
composites, and have shown how this transition depends on
field, gel modulus, and sample strain. A future challenge is to
understand precisely why the observed sample contraction
increases linearly with sample preload.
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